The DAF Series Dissolved Air Flotation systems are designed to remove petroleum products, FOG, TSS, BOD, COD and other contaminants in a wide variety of industries & applications.

Pan America Environmental Dissolved Air Flotation systems are an extremely versatile design allowing high loads of a very wide variety of contaminants to be removed from your wastestream. DAF is considered to be the best, most cost-effective device for separating FOG and solids.

The DAF process consists of super saturation of effluent discharge water with air. The saturated water stream is then redirected and mixed with the wastestream prior to entering the inlet.

As pressure is removed from the saturated stream millions of microscopic bubbles form and attach themselves to the contaminants in the wastestream, thereby changing their bouyancy and floating them to the water surface where they can be skimmed from the water.

Our unique, compact, small footprint Dinky DAF™ design is offered for small flows and tight spaces. Chemical pretreatment can be provided where required for all DAFs.

Our DAF systems can be used for removal of oils, fuels, emulsified products, FOG, BOD, suspended solids, COD, vegetable matter, vegetable oils, animal processing waste, river water for drinking or plant use, bilge water, pretreatment prior to bio-reactor systems and many other types of applications. The DAF is a hardy piece of equipment and can accommodate many wastes types.

Standard Features:
- A36 or 304 or 316 SS construction
- Adjustable water weir
- Integral float reservoir
- Influent diffuser
- Effluent chamber
- Recycle saturation system
- NPT/flanged fittings
- Surface drag skimmer
- V-hopper Bottom, sludge auger
- Lifting lugs
- NEMA 4 controls

Typical applications:
- Frac water remediation
- Tank truck tank wash
- Refinery wastestream
- Biodiesel process water
- Drinking water pretreatment
- Pet food plant process water
- Beef, fish, foul, pork processing
- Rendering plant wastewater
- Food processing plant water
- Algae removal
- Industrial process water
- Bilge water treatment
- Bakery wastewater
- Military wash racks
- Steel mills
Dinky DAF Family of Designs
The most comprehensive and versatile line of DAF systems available.

DAF Design Types
Pan America offers 5 different designs to enhance your project treatment process.
- Flat bottom
- Hopper bottom
- V-Bottom with sludge auger
- Plate DAF
- Compact DAF

Sizing a DAF
DAF sizing takes into consideration many criteria:
- Flow rate
- Water temperature
- Chemical pre-treatment
- Solids loading (LBS/HR/FT²)
- Hydraulic loading (GPM/FT²)
- Air to solids ratio (mL/mg)

Once these are determined then a recycle rate is determined. The flow rate and recycle are combined for total hydraulic flow and size is chosen.

Chemical Pretreatment
Pretreatment will usually increase the DAF performance by conditioning the contaminants which assists the DAF in the flotation process.

Many Options
Are offered to round out your facility design for reduced labor and increased efficiencies.
Pan America offers many chemical pre-treatment system types and configurations to complete your DAF project with a one stop, integrated solution.

The systems can be single and multi-stage reaction tank design or an inline-flocculation tube style designs.

We can provide the full reaction system with mixing, chemical makeup, chemical metering systems and controls.

A variety of chemistries
can be implemented depending on the contaminants present.
- TSS
- O&G
- FOG
- Emulsion breaking
- Metals/minerals

Once contaminants are determined a pretreatment process system can be matched to the DAF.

Pan America can provide systems using rectangular and vertical cylindrical reaction tanks. The materials of tank construction we offer are:
- Coated A36 carbon steel
- 304/316 SS
- Polyethylene
- Polypropylene
- FRP

Three reaction system (coagulation/pH/flocculation) in space saving rectangular design with flocculant makeup/aging on demand.

We provide electronic and motor driven chemical metering pumps matched and sized to each application. We offer as standard Pulsafeeder and LMI pumps and can provide your company's standard pump preference.

The STAX systems offer a simplified inline reaction method using coagulants and/or flocculants. We can calculate reaction timings and offer custom pipe lengths based on your coagulant and flocculant formation timing.

With dual injection points for these chemicals we can add or subtract length based on your jar test. Static mixers (helical, blade or wafer types) can be added for increased and continuous mixing action.

The STAX systems can be provided skid mounted or can be designed with a wall mountable or customized mount system to save space or accommodate a lack of space.

Our chemical metering and control systems can be provided as a complete solution for your project.

Piping construction is PVC by standard and can be provided in CPVC, polyethylene and 304/316 SS.
Recycle Saturation Systems

The DAF systems are offered with two types of recycle saturation systems.

1. **RSP** recycle DAF pump style, no saturation vessel is required.
2. **RSS** uses a saturation vessel with recycle pump to super saturate the recycle flow.

The RSS recycle system can be used for all flow rates from 3 GPM to 2000 GPM or as large a system as is needed. Multiple systems can be provided where required. The RSS systems are ideally suited to new concrete DAFs or retrofitting existing DAFs and API separators.

The RSS System Features:
- **Recycle Pump:** High head cast iron or stainless steel centrifugal 100 psi pump mounted to the DAF or saturation vessel skid to provide air saturated water under pressure to the recycle system. Motor: TEFC
- **Saturation vessel:** PVC, coated steel or stainless steel construction.
- **Air preparation** and control assembly consisting of:
 - check valve, solenoid valve, air flow meter with needle valve, bypass valve, regulator/filter, pressure relief valve and vent valve.
 - **Auto-Q™** automatic equalization control assembly with switch sight glass, pressure gauge and isolation valves.
 - **Auto-Q™** automatic EQ electrical control logic.
 - Inlet mixing chamber.
 - **Valving:** suction isolation, bypass and discharge control.
 - Pump discharge pressure gauge.
 - **Air rotameter** with needle valve for fine air control.
 - MCP NEMA 4 controls in Master Control Panel provided.

- **System requires compressed air.**

The RSS can be shut down and turned on without system upset and EQ point loss.

The RSP System Features:
- **DAF pump:** High head, coated cast iron or 316 stainless steel centrifugal, 100 psi recycle pump mounted to the DAF tank to provide super saturated water under pressure to the air/wastewater mixing inlet.
- **Motor:** Close coupled TEFC.
- Inlet mixing chamber
- **Valving:** suction control, discharge control & air flow measuring and metering
- **Pressure gauge**
- **Vacuum gauge**
- **Air rotameter** with needle valve for fine air control
- MCP NEMA 4 controls in Master Control Panel provided.
- No saturation vessel is required
- No air compressor is required
Dinky DAF™
Flat Bottom

Dissolved Air Flotation Systems

- Chemical pretreatment systems
- Traditional recycle system
- Tank vapor cover
- Class 1 div 2 grp D electrical
- Zone 3, 4 seismic design
- Float pumpout
- Sludge pumpout
- Effluent pumpout
- Influunt feed pump
- Walkway
- High level alarms
- Chemical metering pump systems
- Chemical makeup systems
- Containerized systems
- Trailer mounted systems
- 304/316 SS tank construction
- Polypropylene tank construction
- Freeze protection
- Elevating structures
- Effluent filtration
- Sludge auger (Dinky DAF™)

Options:

Dimensions, design and capacities are not for construction and are subject to change without notice.

Table: Dinky DAF™ Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Float Outlet</th>
<th>Float Hopper Gal.</th>
<th>Inlet Size</th>
<th>Outlet Size</th>
<th>Float Outlet Size</th>
<th>Emptty Weight</th>
<th>Operat. Weight</th>
<th>Flow Rate GPM (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF-5-F</td>
<td>5'-8"</td>
<td>2'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-5"</td>
<td>1'-5"</td>
<td>8</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>871</td>
<td>2267</td>
<td>15</td>
</tr>
<tr>
<td>DAF-10-F</td>
<td>8'-2"</td>
<td>2'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-5"</td>
<td>1'-5"</td>
<td>8</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>1021</td>
<td>3100</td>
<td>30</td>
</tr>
<tr>
<td>DAF-15-F</td>
<td>8'-2"</td>
<td>3'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-5"</td>
<td>1'-5"</td>
<td>12</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>1145</td>
<td>4253</td>
<td>45</td>
</tr>
<tr>
<td>DAF-25-F</td>
<td>8'-2"</td>
<td>5'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-5"</td>
<td>1'-5"</td>
<td>20</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>1396</td>
<td>6577</td>
<td>75</td>
</tr>
<tr>
<td>DAF-35-F</td>
<td>9'-0"</td>
<td>6'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-6"</td>
<td>1'-5"</td>
<td>25</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>1635</td>
<td>8546</td>
<td>105</td>
</tr>
<tr>
<td>DAF-45-F</td>
<td>10'-8"</td>
<td>6'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-6"</td>
<td>1'-5"</td>
<td>25</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>1775</td>
<td>10050</td>
<td>135</td>
</tr>
<tr>
<td>DAF-50-F</td>
<td>11'-5"</td>
<td>6'-4"</td>
<td>3'-11"</td>
<td>8 1/2"</td>
<td>1'-6"</td>
<td>1'-5"</td>
<td>25</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>1845</td>
<td>10800</td>
<td>150</td>
</tr>
</tbody>
</table>

Max flow is based on flow + recycle flow. Model shown with RSP recycle. Actual flow determined by loadings and flow.
Dinky DAF™
Hopper Bottom

Dimensions, design and capacities are not for construction and are subject to change without notice.

Max flow is based on flow + recycle flow. Model shown with RSP recycle. Actual flow determined by loadings and flow.
Dinky DAF™

V Bottom w/auger

DAF Dissolved Air Flotation Systems

Dimensions, design and capacities are not for construction and are subject to change without notice.

Max flow is based on flow + recycle flow. Model shown with RSP recycle. Actual flow determined by loadings and flows.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF-5-V</td>
<td>5'-8"</td>
<td>2'-4"</td>
<td>5'-6"</td>
<td>2'-3"</td>
<td>3'</td>
<td>3'</td>
<td>67</td>
<td>8</td>
<td>4"</td>
<td>3"</td>
<td>2"</td>
<td>3"</td>
<td>1060</td>
<td>3011</td>
<td>15</td>
</tr>
<tr>
<td>DAF-10-V</td>
<td>8'-2"</td>
<td>2'-4"</td>
<td>5'-6"</td>
<td>2'-3"</td>
<td>3'</td>
<td>3'</td>
<td>98</td>
<td>8</td>
<td>4"</td>
<td>3"</td>
<td>2"</td>
<td>3"</td>
<td>1267</td>
<td>4155</td>
<td>30</td>
</tr>
<tr>
<td>DAF-15-V</td>
<td>8'-2"</td>
<td>3'-4"</td>
<td>5'-6"</td>
<td>2'-3"</td>
<td>3'</td>
<td>3'</td>
<td>139</td>
<td>12</td>
<td>4"</td>
<td>3"</td>
<td>2"</td>
<td>3"</td>
<td>1394</td>
<td>5668</td>
<td>45</td>
</tr>
<tr>
<td>DAF-25-V</td>
<td>8'-2"</td>
<td>5'-4"</td>
<td>5'-6"</td>
<td>2'-3"</td>
<td>3'</td>
<td>3'</td>
<td>275</td>
<td>20</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>3"</td>
<td>1690</td>
<td>8351</td>
<td>75</td>
</tr>
<tr>
<td>DAF-35-V</td>
<td>9'-0"</td>
<td>6'-4"</td>
<td>6'-6"</td>
<td>3'-3"</td>
<td>4'-1"</td>
<td>4"</td>
<td>580</td>
<td>25</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>3"</td>
<td>1990</td>
<td>12432</td>
<td>105</td>
</tr>
<tr>
<td>DAF-45-V</td>
<td>10'-8"</td>
<td>6'-4"</td>
<td>6'-6"</td>
<td>3'-3"</td>
<td>4'-1"</td>
<td>4"</td>
<td>691</td>
<td>25</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>3"</td>
<td>2325</td>
<td>14813</td>
<td>135</td>
</tr>
<tr>
<td>DAF-50-V</td>
<td>11'-5"</td>
<td>6'-4"</td>
<td>6'-6"</td>
<td>3'-3"</td>
<td>4'-1"</td>
<td>4"</td>
<td>747</td>
<td>25</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>3"</td>
<td>2411</td>
<td>16000</td>
<td>150</td>
</tr>
</tbody>
</table>

Dinky DAF™ Plate DAF

Dissolved Air Flotation Systems

![Top View of DAF Unit](image)

Dimensions, design and capacities are not for construction and are subject to change without notice.

Max flow is based on flow + recycle flow. Model shown with RSP recycle. Actual flow determined by loadings and flow.

Standard plate spacing = 2”

Dimensions and Capacities

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Float Outlet</th>
<th>Sludge Vol. Gal.</th>
<th>Float Hopper Gal.</th>
<th>Inlet Size</th>
<th>Outlet Size D</th>
<th>Outlet Size E</th>
<th>Sludge Outlet Size F</th>
<th>Float Outlet Size G</th>
<th>Empty Weight Lbs</th>
<th>Oper. Weight Lbs</th>
<th>Flow Rate GPM (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAF-8019</td>
<td>9'-0"</td>
<td>2'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>64</td>
<td>8</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2064</td>
<td>6155</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PDAF-10014</td>
<td>9'-11"</td>
<td>2'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>72</td>
<td>8</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2202</td>
<td>6853</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>PDAF-12018</td>
<td>9'-0"</td>
<td>3'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>88</td>
<td>11.5</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2409</td>
<td>8401</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>PDAF-14022</td>
<td>8'-8"</td>
<td>4'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>104</td>
<td>15</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2664</td>
<td>9500</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>PDAF-16523</td>
<td>9'-0"</td>
<td>4'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>112</td>
<td>15</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2752</td>
<td>10000</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>PDAF-19026</td>
<td>9'-9"</td>
<td>4'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>125</td>
<td>15</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>2887</td>
<td>12400</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>PDAF-21529</td>
<td>10'-5"</td>
<td>4'-5"</td>
<td>9'-1"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-5"</td>
<td>137</td>
<td>15</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>3"</td>
<td>3157</td>
<td>12771</td>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>

DAF Dissolved Air Flotation Systems

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Float Outlet</th>
<th>Sludge Vol. Gal.</th>
<th>Float Hopper Gal.</th>
<th>Inlet Size</th>
<th>Outlet Size</th>
<th>Sludge Outlet Size</th>
<th>Float Outlet Size</th>
<th>Empty Weight Lbs</th>
<th>Oper. Weight Lbs</th>
<th>Area Ft²</th>
<th>Flow Rate GPM (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF-60</td>
<td>15'-2"</td>
<td>6'-0"</td>
<td>5'-7"</td>
<td>4'-4"</td>
<td>3'-11"</td>
<td>2'-9"</td>
<td>700</td>
<td>70</td>
<td>4"</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>4876</td>
<td>19376</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>DAF-85</td>
<td>19'-8"</td>
<td>6'-0"</td>
<td>5'-7"</td>
<td>4'-4"</td>
<td>3'-11"</td>
<td>2'-9"</td>
<td>850</td>
<td>90</td>
<td>4"</td>
<td>4"</td>
<td>4"</td>
<td>3"</td>
<td>5356</td>
<td>25110</td>
<td>85</td>
<td>170</td>
</tr>
<tr>
<td>DAF-100</td>
<td>22'-11"</td>
<td>6'-2"</td>
<td>5'-7"</td>
<td>4'-4"</td>
<td>3'-11"</td>
<td>2'-9"</td>
<td>1090</td>
<td>110</td>
<td>6"</td>
<td>6"</td>
<td>4"</td>
<td>3"</td>
<td>6100</td>
<td>29000</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>DAF-120</td>
<td>24'-3"</td>
<td>6'-7"</td>
<td>6'-7"</td>
<td>4'-4"</td>
<td>5'-1"</td>
<td>2'-2"</td>
<td>1160</td>
<td>175</td>
<td>6"</td>
<td>6"</td>
<td>4"</td>
<td>4"</td>
<td>10600</td>
<td>50000</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>DAF-150</td>
<td>27'-3"</td>
<td>7'-2"</td>
<td>6'-10"</td>
<td>4'-4"</td>
<td>5'-1"</td>
<td>2'-2"</td>
<td>1300</td>
<td>205</td>
<td>6"</td>
<td>6"</td>
<td>4"</td>
<td>4"</td>
<td>12200</td>
<td>74000</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>DAF-180</td>
<td>28'-3"</td>
<td>8'-2"</td>
<td>5'-6"</td>
<td>6'-1"</td>
<td>2'-0"</td>
<td></td>
<td>1435</td>
<td>280</td>
<td>8"</td>
<td>8"</td>
<td>4"</td>
<td>4"</td>
<td>14000</td>
<td>92000</td>
<td>180</td>
<td>360</td>
</tr>
<tr>
<td>DAF-200</td>
<td>31'-1"</td>
<td>8'-2"</td>
<td>5'-6"</td>
<td>6'-1"</td>
<td>2'-0"</td>
<td></td>
<td>1500</td>
<td>315</td>
<td>10"</td>
<td>10"</td>
<td>4"</td>
<td>4"</td>
<td>15100</td>
<td>100000</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>DAF-250</td>
<td>33'-1"</td>
<td>9'-0"</td>
<td>8'-5"</td>
<td>6'-0"</td>
<td>6'-4"</td>
<td>1'-8"</td>
<td>1580</td>
<td>360</td>
<td>10"</td>
<td>10"</td>
<td>4"</td>
<td>4"</td>
<td>18200</td>
<td>129870</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>DAF-300</td>
<td>36'-0"</td>
<td>9'-0"</td>
<td>8'-5"</td>
<td>6'-0"</td>
<td>6'-4"</td>
<td>1'-8"</td>
<td>1660</td>
<td>400</td>
<td>12"</td>
<td>12"</td>
<td>4"</td>
<td>4"</td>
<td>20800</td>
<td>166000</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>DAF-350</td>
<td>42'-0"</td>
<td>10'-4"</td>
<td>9'-0"</td>
<td>6'-2"</td>
<td>7'-2"</td>
<td>1'-8"</td>
<td>1740</td>
<td>450</td>
<td>12"</td>
<td>12"</td>
<td>4"</td>
<td>4"</td>
<td>22300</td>
<td>175000</td>
<td>350</td>
<td>700</td>
</tr>
<tr>
<td>DAF-400</td>
<td>48'-0"</td>
<td>10'-4"</td>
<td>9'-0"</td>
<td>6'-2"</td>
<td>7'-2"</td>
<td>1'-6"</td>
<td>1900</td>
<td>530</td>
<td>12"</td>
<td>12"</td>
<td>4"</td>
<td>4"</td>
<td>25350</td>
<td>225000</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>DAF-450</td>
<td>55'-0"</td>
<td>10'-4"</td>
<td>9'-6"</td>
<td>6'-2"</td>
<td>7'-2"</td>
<td>1'-6"</td>
<td>2450</td>
<td>620</td>
<td>14"</td>
<td>14"</td>
<td>4"</td>
<td>4"</td>
<td>29000</td>
<td>240500</td>
<td>450</td>
<td>900</td>
</tr>
<tr>
<td>DAF-550</td>
<td>59'-0"</td>
<td>11'-0"</td>
<td>9'-6"</td>
<td>6'-6"</td>
<td>7'-2"</td>
<td>1'-6"</td>
<td>2900</td>
<td>695</td>
<td>14"</td>
<td>14"</td>
<td>4"</td>
<td>4"</td>
<td>39700</td>
<td>268000</td>
<td>550</td>
<td>1100</td>
</tr>
<tr>
<td>DAF-600</td>
<td>62'-0"</td>
<td>11'-4"</td>
<td>9'-8"</td>
<td>6'-6"</td>
<td>8'-0"</td>
<td>1'-6"</td>
<td>3735</td>
<td>750</td>
<td>14"</td>
<td>14"</td>
<td>4"</td>
<td>4"</td>
<td>46000</td>
<td>295000</td>
<td>600</td>
<td>1500</td>
</tr>
</tbody>
</table>

Dimensions, design and capacities are not for construction and are subject to change without notice. Max flow is based on flow + recycle flow. Actual flow determined by loadings and flow.
RSS Recycle Systems
Low Flow 3-40 GPM

RSS shown with and without local controls.

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Vessel Diam.</th>
<th>Vessel Material</th>
<th>Inlet Size</th>
<th>Outlet Size</th>
<th>Air Req'd CFH 100 psi</th>
<th>Weight Lbs</th>
<th>Flow Rate GPM (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSS-85</td>
<td>3'-0"</td>
<td>2'-4"</td>
<td>5'-4"</td>
<td>8"</td>
<td>304 SS</td>
<td>1.25"</td>
<td>1"</td>
<td>1</td>
<td>258</td>
<td>3-5</td>
</tr>
<tr>
<td>RSS-810</td>
<td>3'-0"</td>
<td>2'-4"</td>
<td>6'-2"</td>
<td>8"</td>
<td>304 SS</td>
<td>1.25"</td>
<td>1"</td>
<td>1</td>
<td>315</td>
<td>5-10</td>
</tr>
<tr>
<td>RSS-815</td>
<td>3'-0"</td>
<td>2'-4"</td>
<td>7'-4"</td>
<td>8"</td>
<td>304 SS</td>
<td>1.25"</td>
<td>1"</td>
<td>1.5</td>
<td>360</td>
<td>10-15</td>
</tr>
<tr>
<td>RSS-1225</td>
<td>3'-4"</td>
<td>2'-8"</td>
<td>5'-4"</td>
<td>12"</td>
<td>304 SS</td>
<td>1.25"</td>
<td>1"</td>
<td>2</td>
<td>410</td>
<td>15-25</td>
</tr>
<tr>
<td>RSS-1235</td>
<td>3'-4"</td>
<td>2'-8"</td>
<td>6'-2"</td>
<td>12"</td>
<td>304 SS</td>
<td>1.5"</td>
<td>1.5"</td>
<td>3</td>
<td>465</td>
<td>25-35</td>
</tr>
<tr>
<td>RSS-1240</td>
<td>3'-4"</td>
<td>2'-8"</td>
<td>7'-4"</td>
<td>12"</td>
<td>304 SS</td>
<td>1.5"</td>
<td>1.5"</td>
<td>3.5</td>
<td>520</td>
<td>35-40</td>
</tr>
</tbody>
</table>

Dimensions, design and capacities are not for construction and are subject to change without notice.

Air requirement is a volumetric estimate and is subject to change depending on application details.
RSS Recycle Systems

High Flow 50-2000 GPM

Dissolved Air Flotation Systems

DAF

RSS Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Vessel Diam.</th>
<th>Vessel Material</th>
<th>Inlet Size</th>
<th>Outlet Size</th>
<th>Air Req'd CFH 100 psi</th>
<th>Empty Weight Lbs</th>
<th>Oper. Weight Lbs</th>
<th>Flow Rate GPM (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSS-1850</td>
<td>3'-0"</td>
<td>4'-2"</td>
<td>7'-6"</td>
<td>18"</td>
<td>CS</td>
<td>2"</td>
<td>1.5"</td>
<td>4</td>
<td>783</td>
<td>1003</td>
<td>50</td>
</tr>
<tr>
<td>RSS-1860</td>
<td>3'-0"</td>
<td>4'-2"</td>
<td>7'-6"</td>
<td>18"</td>
<td>CS</td>
<td>2"</td>
<td>1.5"</td>
<td>4.5</td>
<td>783</td>
<td>1003</td>
<td>60</td>
</tr>
<tr>
<td>RSS-2480</td>
<td>3'-0"</td>
<td>4'-8"</td>
<td>7'-6"</td>
<td>24"</td>
<td>CS</td>
<td>2"</td>
<td>1.5"</td>
<td>6</td>
<td>940</td>
<td>1331</td>
<td>80</td>
</tr>
<tr>
<td>RSS-30100</td>
<td>3'-4"</td>
<td>5'-2"</td>
<td>8'-6"</td>
<td>30"</td>
<td>CS</td>
<td>2"</td>
<td>1.5"</td>
<td>7.5</td>
<td>1555</td>
<td>2321</td>
<td>100</td>
</tr>
<tr>
<td>RSS-30120</td>
<td>3'-4"</td>
<td>5'-2"</td>
<td>9'-7"</td>
<td>30"</td>
<td>CS</td>
<td>2"</td>
<td>1.5"</td>
<td>9</td>
<td>1705</td>
<td>2625</td>
<td>120</td>
</tr>
<tr>
<td>RSS-36150</td>
<td>3'-4"</td>
<td>5'-8"</td>
<td>9'-7"</td>
<td>36"</td>
<td>CS</td>
<td>3"</td>
<td>2"</td>
<td>11</td>
<td>2033</td>
<td>3356</td>
<td>150</td>
</tr>
<tr>
<td>RSS-36200</td>
<td>3'-4"</td>
<td>5'-8"</td>
<td>9'-7"</td>
<td>36"</td>
<td>CS</td>
<td>3"</td>
<td>2"</td>
<td>15</td>
<td>2033</td>
<td>3356</td>
<td>200</td>
</tr>
<tr>
<td>RSS-42250</td>
<td>3'-4"</td>
<td>6'-2"</td>
<td>9'-7"</td>
<td>42"</td>
<td>CS</td>
<td>3"</td>
<td>2.5"</td>
<td>20</td>
<td>2384</td>
<td>4185</td>
<td>250</td>
</tr>
<tr>
<td>RSS-42300</td>
<td>5'-0"</td>
<td>6'-2"</td>
<td>9'-7"</td>
<td>42"</td>
<td>CS</td>
<td>3"</td>
<td>2.5"</td>
<td>22</td>
<td>2631</td>
<td>4432</td>
<td>300</td>
</tr>
<tr>
<td>RSS-48350</td>
<td>5'-0"</td>
<td>6'-8"</td>
<td>9'-7"</td>
<td>48"</td>
<td>CS</td>
<td>3"</td>
<td>2.5"</td>
<td>26</td>
<td>3007</td>
<td>5360</td>
<td>350</td>
</tr>
<tr>
<td>RSS-54400</td>
<td>5'-0"</td>
<td>7'-2"</td>
<td>10'-8"</td>
<td>54"</td>
<td>CS</td>
<td>4"</td>
<td>3"</td>
<td>30</td>
<td>3677</td>
<td>7150</td>
<td>400</td>
</tr>
<tr>
<td>RSS-60450</td>
<td>5'-4"</td>
<td>7'-8"</td>
<td>10'-8"</td>
<td>60"</td>
<td>CS</td>
<td>4"</td>
<td>3"</td>
<td>33</td>
<td>5516</td>
<td>9603</td>
<td>450</td>
</tr>
<tr>
<td>RSS-60500</td>
<td>5'-4"</td>
<td>7'-8"</td>
<td>10'-8"</td>
<td>60"</td>
<td>CS</td>
<td>4"</td>
<td>4"</td>
<td>37</td>
<td>5516</td>
<td>9603</td>
<td>500</td>
</tr>
<tr>
<td>RSS-60550</td>
<td>5'-4"</td>
<td>7'-10"</td>
<td>10'-8"</td>
<td>60"</td>
<td>CS</td>
<td>4"</td>
<td>4"</td>
<td>40</td>
<td>5718</td>
<td>10310</td>
<td>550</td>
</tr>
<tr>
<td>RSS-66650</td>
<td>5'-4"</td>
<td>7'-10"</td>
<td>10'-8"</td>
<td>65"</td>
<td>CS</td>
<td>6"</td>
<td>4"</td>
<td>45</td>
<td>6375</td>
<td>11950</td>
<td>650</td>
</tr>
</tbody>
</table>

Dimensions, design, weights and capacities are not for construction and are subject to change without notice.

Air requirement is a volumetric estimate and is subject to change depending on application details.
System Customization

Pan America can provide infinitely variable customization of our systems to fit your project, facility and operator needs.

Through component skid mounting, plumbing and wiring a system can be designed for arrival mostly or completely ready for installation reducing your on-site installation costs and timing.

By using single or multiple integrated skids your system can be designed to fit a variety of facility layouts whether straight line, around corners, elevated and stacked, the possibilities are endless and our creative design engineers can assist with workable suggestions.

We have over 30 different standard options that can round out the system design when integrated into a single solution.

We adapt and integrate multiple technologies to fit your project, facility and organizations needs while building in flexibility and longevity.

Skid design can be provided in cooperation with your facility design team or provided per Pan America’s experienced engineering team design methods.

The system design can be at grade or elevated via raised platform with ladder or stair access to save valuable plant floor space and allow gravity drain of water and separated contaminants.

DAF Dissolved Air Flotation Systems

Systems can also be installed in shipping containers, trailers or oil field skid designs.

Electrical design can be standard NEMA4 or NEMA4X, or NEMA 7 for class 1 div 1 or 2 group D environments.

Customization can include any and all of our treatment systems linked together in a system solution with design work taking your facility into consideration to fit elements of the facility design.

Instrumentation can include:
- pH controllers
- ORP controller
- Turbidity monitors
- TSS monitors
- Flowmeters
- Oil in water monitors
- Pressure sensors
- Temperature sensors
System Designs

Typical, frequent designs we provide are DAFs with a mix of the following options packaged as a system:

- DAF
- Chemical pretreatment
- Sludge pumpout
- Float pumpout
- Feed pump
- Covered tankage
- Oil water separator
- All stainless construction
- High water/float alarms
- Effluent pumpout/filtration
- Dewater filter press system

Our systems utilize the best industrial technologies provided by quality manufacturers with excellent reputations and products.

Pan America continuously strives to improve its product lines and continuously makes design changes to upgrade functions, process, quality and cost by using 3D CAD, Computational Fluid Dynamics (CFD) and structural analysis software to frequently review products and implement changes.

Jar Testing

Pre process study services can be provided with bench testing using jar testing methods to determine chemistry and process design based on the chemistry. Following jar testing samples can be sent to 3rd party laboratories to verify pre & post treatment levels for such things as BOD, TSS, O&G, COD, metals and other contaminant or water conditions.

DAF

Dissolved Air Flotation Systems
DAF Options Descriptions

Influent Feed System Air operated, diaphragm pump with air controls or progressive cavity pump, sump level switches & NEMA 4 control panel, base mounted, 115/230/460V power offered. Electric diaphragm pumps available.

Effluent Pumpout Centrifugal pump with level switches & NEMA 4 control panel, base mounted, 115/230/460V power offered. DAF Effluent chamber must be expanded to accommodate pumpout or provision of an external pumpout tank.

Sludge Pumpout System Air operated, diaphragm pump with air controls & NEMA 4 control panel, auto on/off timer, base mounted, 115V/1ph/60Hz power req’d. Progressive cavity pump system also available. 1 - 100 GPM.

Float Pumpout System Air operated, diaphragm pump with air controls, level switches & NEMA 4 control panel, base mounted, 115V/1ph/60Hz power req’d. Electric gear or progressive cavity pump systems available. 1 - 100 GPM (larger if required)

Sludge Auger Dinky DAF V-hopper can be provided with a sludge auger. System consists of stainless steel shafts with screw auger(s) driven by a slow speed gear motor drive assembly. The auger extends the full length of the solids hopper and conveys solids to the sludge outlet. A NEMA 4 on/off control box is provided, power required: 230 or 460V/3ph/60Hz.

Cover DAF tank can be provided with a vapor retaining cover.

Freeze Protection Immersion heaters mounted through tank wall. Each heater has an independent thermocouple well, 0-100 deg. F thermostat and NEMA 4 housing. 230/460V/3ph/60Hz power req’d.

Oil Sight Glass Two automatic, brass valves with tempered sight glass and protection rods mounted in oil reservoir. If glass is broken check ball stops outflow from reservoir.

External Sight / Level Glass An externally mounted clear PVC sight tube is provided with multi-point level switch for indication or pump control of oil or water. Switch is removable for cleaning and inspection.

Elevation Legs & Walkways Epoxy coated steel legs to elevate tank to desired level. Full platforms & walkways with ladders or stairways can be designed where required or desired.

Alternate Tank Construction Standard coated A36 carbon steel construction can be changed to 304 or 316 stainless steel and polypropylene.

External Storage/Feed Tanks A wide variety of tank volumes can be supplied for your water, product and sludge holding needs. Flat bottom and cone bottom designs constructed in polyethylene, fiberglass, steel & stainless steel can be provided.

Effluent Filter Systems Solids filter systems can be provided to remove filterable solids from the separator effluent. Contact Pan America to determine proper filtration needs for your application.

AQAM Filter Systems AQAM filter systems can be provided to remove trace hydrocarbons, sheens, DNAPLs, slightly soluble chlorinated hydrocarbons and high molecular weight organics from the separator effluent. Contact Pan America to determine proper filtration needs for your application. AQAM can also be used to protect and increase GAC lifespan.

Carbon Filtration Systems (GAC) GAC carbon filters can be provided to remove contaminants after the separator. Contact Pan America to determine proper system needs for your application.

Emulsion Cracking Systems Emulsion cracking systems can be provided to remove oil-in-water emulsions prior to the separator. Contact Pan America to determine proper system needs for your application.

pH Adjustment Systems pH adjustment systems can be provided to maintain pH levels prior to or after the separator. Contact Pan America to determine proper system needs for your application.

Chemical Pretreatment Systems Chemical pretreatment system can be provided to coagulate, flocculate, precipitate, oxidize, break emulsions and/or adjust pH before or after the DAF. Contact Pan America to determine proper system needs for your application.

System Containerization DAF systems with any options can be installed in a 20 or 40’ shipping container(s) to simplify system provision and field implementation. System would include the complete mounting, piping and wiring of the system in one or more container as required by the project.

Trailer Mounting DAFs can be mounted on a trailer for system mobilization. Trailer design generally includes corner leveling jacks, bubble levels, walkway, toolbox, electric or hydraulic brakes, piping and wiring of options.

Field Skid Mounting DAF systems can be mounted to a mobile skid with leveling for quick field mobilization.

Skid Mounted System DAFs can be combined with our other treatment equipment and options into a fully integrated, custom designed system completely mounted, plumbed and wired to a system skid. To simplify your need to do the wiring and plumbing on site, reducing your time frames and on site costs, we design around your requirements.

Vent Scrubber Separator vapors can be extracted and scrubbed prior to discharge to atmosphere to remove VOC content.

Level Sensors Level sensors can be provided to detect water and oil/fuels. One or more sensor points can be provided to perform various functions such as high level, low level, pump on/off based on liquid levels and level detection for DCS controls or other functions based on your needs.

Class 1 Div 1 & 2 Systems can be designed for use in a class 1 div 1 or 2 environment. Controls, components and wiring are changed to meet the needs of these environments. Intrinsically safe relays are also used for level sensors.

Oil Monitor an oil detection system can be provided to monitor effluent oil content and provide various actions based on the oil alarm setpoint. Actions might include: audible/visual alarm, redirection of influent or effluent via actuated valve, shutdown of influent pump or your custom action.
The auger extends the full length of the solids hopper and conveys solids to the sludge outlet. Power required: 230/460V/3ph/60Hz.

1.06 Surface Float Skimmer
A mechanical surface drag skimmer assembly is provided to sweep the floating solids (float) from the effluent end of the separation chamber toward the influent end. The skimmer consists of 304 stainless steel flaps and neoprene or Buna-N wiper blades, Acetal flight chain, Acetal sprockets and chain guides, variable speed drive, 304 SS sprocket shafts, bearings and chain adjustment bearing frames. The flights will be bolted to the roller chains spanning the width of the tank and will be designed to wipe the tank sides and float ramp. UHMWPE flight wear bars are provided to reduce tank and flight wear.

1.07 Air Saturation System
The DAF is provided with an air saturation system that is designed to direct a portion of the water from the effluent end of the tank, super-saturate the water with air and then mix this solution with incoming wastewater facilitating intimate mixing of both flows. Recycle saturation pump and schedule 80 PVC piping are mounted on DAF tank with a bypass to the effluent chamber.

1.08 RSP Recycle DAF Pump
A high head, coated cast iron centrifugal, 100 psi recycle pump mounted to the DAF tank is included to provide air saturated water under pressure to the air/wastewater mixing inlet prior to entering the separation chamber. A NEMA 4 control panel is provided mounted to the DAF tank. The recycle pump draws ambient air into the pump and saturates the water with this air under high pressure. No external air source is required. A fine air-metering valve with rotometer are provided to control and measure the air flow and ratio of air to water.

1.09 RSS Recycle Saturation System (Alternate)
The DAF is provided with a recycle saturation system that is designed to direct a portion of the water from the effluent end of the tank, super-saturate the water with air and then mix this solution with incoming wastewater facilitating intimate mixing of both flows. Recycle saturation pump and schedule 80 PVC piping are mounted on DAF tank and/or on the recycle system skid with a bypass line to the effluent chamber.

2.01 Steel Construction
Tank shell, baffles and internal structural members shall be constructed of A-36 carbon steel. Weld joints are to be double welded and dye penetrant tested.

2.02 Surface Preparation
Interior surfaces shall be prepared to an SSPC-SP10 near white metal blast. Exterior surfaces shall be prepared to an SSPC-SP6 commercial blast.

2.03 Coatings
Interior coating to be a self-priming coal tar epoxy (18-22 mils dft). Exterior coating shall be primer coat followed by industrial polyurethane enamel coat (6 mils DFT). Finish color is Green.

2.04 Internal Piping
Internal piping shall be ASTM A53 black steel.

2.05 Fasteners
All wetted fasteners to be ANSi, 304 stainless steel minimum. All non-wetted hardware to be zinc plated.

2.06 I.O.M. Manuals
Two copies of the Installation, Operation and Maintenance manuals will be provided.

2.07 Assembly
The DAF components will be installed on or in the DAF tank, plumbed, wired and functionally tested prior to shipping.

2.08 Warranty
Pan America Environmental warrants its products to be free of defect in materials and workmanship for a period of one year from the date of shipment.
Dissolved Air Flotation (DAF) Operational Theory

Dissolved Air Flotation (DAF) is the process of removing suspended solids, oils and other contaminants via the use of air bubble flotation. Air is dissolved into water, mixed with the wastewater and released from solution while in intimate contact with the contaminants. Air bubbles form, attach to the solids, increase their buoyancy and float the solids to the water’s surface. A percentage of the clean effluent is recycled and super-saturated with air, mixed with the wastewater influent and injected into the DAF separation chamber. The dissolved air comes out of solution, producing millions of microscopic bubbles. These bubbles attach to the solids and float them to the surface where they are mechanically skimmed and removed from the tank. The Pan America Environmental dissolved air flotation systems are designed to remove fats, oils & grease (FOG), suspended solids, food/animal production/processing wastes, industrial wastes, hydrocarbon oils/emulsions and many other contaminants. Clarification rates as high as 97% or more can be achieved using our dissolved air flotation systems. Chemical pre-treatment can often help to improve the performance of contaminant removal.

Pan America’s Conventional DAF using the RSS saturation system design provides a high head recycle pump combined with a saturation vessel to dissolve air into the water. This type of system is quite effective and can be applied across all flow rates. This design requires somewhat more time to establish a stable EQ point compared to the DAF pump design and is where the Pan America Environmental Auto Q™ automated EQ system simplifies, shortens and controls the entire process. Air transfer efficiency is approximately 12% @ 93% entrainment due to the high pressure operation (90-100 psi) as opposed to competitive designs that use pressures ranging from 60 – 70 psi.

DAF sizing takes into consideration many criteria for sizing: Flow rate, Water temperature, Waste characteristics, Chemical pre-treatment, Solids loading (LBS/HR/Ft²), hydraulic overflow rate (feed + recycle flow/R2 area), Air to solids ratio (LBS of air/LBS of Solids). The amount of air that can be dissolved into the recycle water stream is directly proportional to the pressure of the air in the saturation vessel which would be valid up to approximately 7 atmospheres.

DAFs are designed on the basis of the peak flow rate expected. The flow can range from 1 to 5 gallons per minute per square foot of surface area (GPM/F2). Bench testing of waste stream samples is usually the preferred starting point when sizing equipment and determining proper chemical processes prior to the DAF. The chemical pre-treatment will assist and improve the DAF separation process by increasing solids surface area and creation of a matrix in which to trap air bubbles.

Chemical Pretreatment often improves DAF solids removal efficiencies and oil emulsion breaking. The use of chemical flocculants with DAF is based on system efficiency, application (use of DAF) and cost. Commonly used chemicals include trivalent metallic salts of iron, such as FeCl₂ or FeSO₄ or aluminum, such as Al₂(SO₄)₃. Organic and inorganic polymers (cationic or anionic) are often used to enhance the DAF process. The most commonly used inorganic polymers are the polyacrylamides. Chemical flocculant concentrations used normally range from 0.5 - 3% solution with dosages in the 100 – 500 mg/L range. The wastewater pH may need to be adjusted between 4.5 and 5.5 for the ferric compounds or between 5.5 and 6.5 for the aluminum compounds using an acid such as H₂SO₄ or a base such as NaOH. In many applications, the DAF effluent requires pH adjustment utilizing a base such as NaOH to assure the DAF effluent pH is within the limits specified by the POTW (6-9 typically).

Attachment of most of the bubbles to solid particles can be affected through surface energies while others are trapped by the solids or by hydrous oxide flocs as the floc spreads out in the water column. Colloidal solids are normally too small to allow formation of sufficient air-particle bonding. They must first be coagulated by a chemical such as the aluminum or iron compounds mentioned above and then absorbed by the hydrous metal oxide floc generated by these compounds. Frequently, a coagulant aid is required in combination with the flocculant to agglomerate the hydrous oxide floc, increase particle size and improve the rate of flotation. Mechanical/chemical emulsions can also be broken through pH and polymer reactions.

Where the float is to be used to feed animals used for human consumption, organic compounds such as chitosan, carrageenan, and lignosulfonic acid, or their derivatives can be used. Use only compounds approved by the Food and Drug Administration (FDA) Office of Veterinary Medicine.

Float Dewatering DAF float often contains 2 to 10 percent solids. The solids may need to be dewatered before disposal to reduce the sludge volume by reducing water content. Float dewatering is usually performed by using one of the following technologies: Filter press, Belt filter press, Centrifuge, Drying bed or Vacuum precoat filter.

Pan America’s DAF using the RSP recycle pump design incorporates today’s “state of the art” technology in DAF design. This design simplifies the DAF process, requires less startup time, less capital cost, instrumentation and labor. The design is process friendly, providing virtually instant saturation upon system startup without equalization and additional startup procedures. Once the system is adjusted the system can be shutdown and started up again without any readjustment or equalization. High air transfer efficiencies are also realized due to high saturation pressures with 12% @ 93% entrainment. Pan America can provide both styles of DAF recycle designs depending on application, flow rate and customer preferences.